Thermocouple & RTD Sensors **THERMOCOUPLES** A thermocouple is a sensor for measuring temperature. It consists of two dissimilar metals, joined together at one end. When the junction of the two metals is heated or cooled a voltage is produced that can interpreted by a temperature controller, high limit or display device. There are two common constructions for these: Tube and Wire and Mineral Insulated. The tube and wire uses an empty stainless tube with a wire inside which has a welded tip incorporating the wire junction. This construction is typically used to 900°F. The Mineral Insulated construction uses a highly compacted stainless sheath with solid conductors encased in magnesium oxide insulation. This construction offers a wider variety of diameters, allows for the sensors to be bent in the field and for temperatures to 2200°F. These sensors are available is a huge range of physical packages with a variety of lead wire, housing, and mounting options. #### RTD's (Resistance Temperature Detectors) (RTDs) are temperature sensors that contain a resistor that changes resistance value as its temperature changes. RTDs are also available in a Tube and Wire and Mineral Insulated construction. They are more accurate than thermocouples and are typically used for temperature sensitive and laboratory applications. We offer these in a variety of constructions and physical packages but are constrained by the size of the resistor beads. There are restrictions to the diameter and lengths of the available constructions. #### STANDARD CONSTRUCTIONS Tube and Wire - Series 150 Tube and Wire - Series 151 Tube and Wire - Series 152 <u>.</u> Tube and Wire - Series 160 Tube and Wire - Series 161 Tube and Wire - Series 162 THERMOCOUPLES - ADJUSTABLE BAYONET Series 110 Series 120 #### THERMOCOUPLES - RING TONGUE AND SHIMSTOCK Series 130 Series 140 | 1) Series | 130 140 | |--------------------|--| | 2) Lug Sizes | Ring size A = #8, B = #10, C = $^{1}/_{4}$ "
Shim size D = $^{3}/_{4}$ " by $^{3}/_{4}$ " Stainless steel | | 3) Calibration | J, K, T, E, $D = RTD 2$ wire $F = RTD 3$ wire | | 4) Junction | G = Grounded, $U = Ungrounded$ | | 5) Leads | T = Fiberglass 24 ga stainless braid
S = Fiberglass 20 ga stainless braid
I = Fiberglass 24 ga stainless hose
H = Fiberglass 20 ga stainless hose
A = Teflon 24 ga
B = Teflon 20 ga | | 6) Lead length | In whole inches 006-999 | | 7) Termination | Choose a terminal design from pg L8 | | 8) Special options | Enter 0 if none. Specify others at time of order | ## THERMOCOUPLES - NOZZLE AND PIPE CLAMP Series 145 Series 146 #### THERMOCOUPLES & RTD - TUBE AND WIRE #### Series 151 F = RTD 3 wire ## Series 152 ## Series 160 ## Series 161 | 1) Series | 160 | 161 | 162 | |-----------------|---------------------------|---------------------------|--| | 2) Diameter (D) | B = 1/8 | S'', $C = 3/1$ | 6", D = 1/4", | | 3) Calibration | | T, E,
D 3 wire | D = RTD 2 wire | | 4) Junction | G = Gr | ounded, | U = Ungrounded | | 5) A Dimension | G=31/2
M=61/
S=91/2 | 2, H=4, I=4
2, N=7, O= | 1/ ₂ , D=2, E=21/ ₂ , F=3
41/ ₂ , J=5, K=51/ ₂ , L=6,
=71/ ₂ , P=8, Q=81/ ₂ , R=5
=12, V=18, W=24, Y=36
length | | 6) B Dimension | A=1/2, | B=1, C=1 | 1/ ₂ , D=2, E=21/ ₂ , F=3 | THERMOCOUPLES - MINERAL INSULATED Series T3 Series T2 Series T1 **RTD - MINERAL INSULATED** THERMOCOUPLES & RTD - TERMINATIONS ### A - Standard Plug **B** - Standard Jack C - Standard Plug / Mating Jack D - Mini Plug E - Mini Jack F - Mini Plug / Mating Jack L - Split Leads M - Leads with Spade Lugs #### THERMOCOUPLES - PLUGS AND JACKS #### Plug - Male 400°F Hollow pins Part number _MP Insert callibration J.K.T.R.U.E.N #### **Panel Jack** 400°F Hollow pins Part number _PMJ Insert callibration J.K.T.R.U.E.N #### Jack - Female 400°F Hollow pins Part number _FP Insert callibration J.K.T.R.U.E.N #### **Mini Panel Jack** 400°F Hollow pins Part number _PMJ - mini Insert callibration J.K.T.R.U.E.N Mini Plug - Male 3 Pin Plug - Male 400°F Hollow pins Part number _MP - mini Insert callibration J.K.T.R.U.E.N 400°F Hollow pins Part number _MP-3 Insert callibration J.K.T.R.U.E.N #### Mini Jack - Female 400°F Hollow pins Part number _FP - mini Insert callibration J.K.T.R.U.E.N ### 3 Pin Jack - Female 400°F Hollow pins Part number _FP-3 Insert callibration J.K.T.R.U.E.N #### THERMOCOUPLES - ACCESSORIES #### **Bayonet adaptors** | Part No. | Length | Thread | |----------|--------|----------| | BA1 | 7/8" | 1/8" NPT | | BA2 | 1 1/2" | 1/8" NPT | | BA3 | 2" | 1/8" NPT | | BA4 | 2 1/2" | 1/8" NPT | | BA5 | 3" | 1/8" NPT | #### **Compression Fittings** | Part No. | Sheath O.D. | Material | Male NPT | |-----------|-------------|-----------|----------| | CFB1/16ID | 1/16" | Brass | 1/8" | | CFS1/16ID | 1/16" | Stainless | 1/8" | | CFB1/8ID | 1/8" | Brass | 1/8" | | CFS1/8ID | 1/8" | Stainless | 1/8" | | CFB3/16ID | 3/16" | Brass | 1/8" | | CFS3/16ID | 3/16" | Stainless | 1/8" | | CFB1/4ID | 1/4" | Brass | 1/8" | | CFS1/4ID | 1/4" | Stainless | 1/8" | | | | | | ## Thermocouple wire | Overall jacket
jacket | Single
Conductors | Temperature ratings
Continuous Single reading | | | |------------------------------|--|--|---|--| | PVC | PVC | -20 to +221°F
-29 to +105°F | N/A | | | FEP Teflon | FEP Teflon | -90 to +400°F
-67 to +204°C | 500°F
260°C | | | Kapton | Kapton | 500°F
260°C | N/A | | | Silicone imp.
glass braid | Silicone imp.
glass braid | 900°F
482°C | 1000°F
538°C | | | Vitreous Silica
Fiber | Vitreous Silica
Fiber | 1600°F
871°C | 2000°F
1093°C | | | Ceramic Fiber | Ceramic Fiber | 2200°F
1204°C | 2600°F
1204°C | | | | PVC le FEP Teflon Kapton Silicone imp. glass braid Vitreous Silica Fiber | PVC PVC FEP Teflon FEP Teflon Kapton Kapton Silicone imp. glass braid Vitreous Silica Fiber Fiber Conductors PVC PVC SEP Teflon Kapton Vitreous Silica Fiber | PVC PVC -20 to +221°F -29 to +105°F FEP Teflon FEP Teflon -90 to +400°F -67 to +204°C Kapton Kapton 500°F 260°C Silicone imp. glass braid glass braid 482°C Vitreous Silica Fiber Ceramic Fiber Ceramic Fiber Ceramic Fiber Continuous Continuous Continuous FEP Teflon -90 to +400°F -67 to +204°C Substituting Fiber Silicone imp. 900°F 482°C Continuous Silicone imp. 900°F 1600°F 871°C Ceramic Fiber Ceramic Fiber 2200°F | | THERMOCOUPLES - WIRE COLOUR CODES | | North American Colour Codes | | | | | | | | |------|---|--|--|-------------|--|-----------------------|--|------------------| | Code | | mbination | Thermocouple Color Coding Thermocoupl Extension | | Maximum
Temperatur | EMF (mV)
Over Max. | Limits of Error**
(Whichever is
Greater) | | | | +Lead | +Lead -Lead Thermocoupi Extension e Useful Temperature Range Range | Standard | | | | | | | , | ‡IRON
Fe
(magnetic) | CONSTANTAN
COPPER-
NICKEL
Cu-Ni | G: | <u> </u> | 0 to 750°C
(32 to 1382°F)
Therm. Grade
0 to 200°C
(32 to 392°F)
Ext. Grade | -8.095 to 69.553 | 0 to 750°
1382
2.2°C or 0.
75% | °F) | | к | NICKEL-
CHROMIUM
Ni-Cr | NICKEL-
ALUMINIUM
Ni-Al
(magnetic) | E : | <u>\$</u> : | -200 to 1250°C
(328 to 2282°F)
Therm, Grade
0 to 200°C
(32 to 392°F)
Ext. Grade | -6.458 to 54.886 | -200 to 1:
328 to 22
2.2°C or
0.75%
Above 0°C
2.2°C or
2.0%
Below 0°C | | | т | COPPER
Cu | CONSTANTAN
COPPER-
NICKEL
Cu-Ni | E : | <u> </u> | -200 to 350°C
(-328 to 662°F)
Therm. Grade
-60 to 100°C
(-76 to 212°F)
Ext. Grade | -6.528 to 20.872 | -200 to 350°
662°
1.0°C or
0.75%
Above 0°C
1.0°C or
1.5%
Below 0°C | | | E | NICKEL-
CHROMIUM
Ni-Cr | CONSTANTAN
COPPER-
NICKEL
Cu-Ni | | <u> </u> | -200 to 900°C
(-328 to
1652°F)
Therm. Grade
0 to 200°C
(32 to 392°F)
Ext. Grade | -9.835 to 76.373 | -200 to 900°
1652
1.7°C or
0.5%
Above 0°C
1.7°C or
1.0%
Below 0°C | | | N | NICROSIL
Ni-Cr-Si | NISIL
Ni-Si-Mg | E : | G: | -270 to 1300°C
(-450 to
2372°F)
Therm. Grade
0 to 200°C
(32 to 392°F)
Ext. Grade | -4.345 to 47.513 | 2.2°C or
0.75%
Above 0°C
2.2°C or
2.0%
Below 0°C | 1.1°C or
0.4% | | R | PLATINUM
13%
RHODIUM
Pt-13% Rh | PLATINUM
PT | NONE
ESTABLISHED | <u> </u> | 0 to 1450°C
(32 to 2642°F)
Therm. Grade
0 to 150°C
(32 to 300°F)
Ext. Grade | -0.226 to 21.101 | 0 to 1450
2642
1.5°C or
0.25% | °F)
0.6°C | | s | PLATINUM
10%
RHODIUM
Pt-10% Rh | PLATINUM
PT | NONE
ESTABLISHED | <u> </u> | 0 to 1450°C
(32 to 2642°F)
Therm. Grade
0 to 150°C
(32 to 300°F)
Ext. Grade | -0.236 to 18.693 | 0 to 1450°
2642
1.5°C or
0.25% | | | | International Colour Codes | | | | | | | |--------------|----------------------------|---|-----------------------------------|---------------------------------------|--------------------------------------|----------------------------|--| | ANSI
CODE | International
IEC 584-3 | International
IEC 584-3
Intrinsically
Safe | CZECH
BRITISH
to
BS 1843 | NETHERLANDS
GERMAN
to DIN 43710 | JAPANESE
to
JIS C
1610-1981 | FRENCH
to
NFC 42-324 | Comments
Environment -
Bare Wire | | J | <u> </u> | Reducing, Vacuum, Inert.
Limited Use in Oxidising at
High Temperatures Not
Recommended for Low
Temperatures | | к | <u> </u> | <u> </u> | (g): | E | <u> </u> | <u> </u> | Clean Oxidising and Inert.
Limited Use in Vacuum or
Reducing. Wide Temperature
Range. Most Popular
Calibration | | ī | <u> </u> | <u> </u> | G. | <u> </u> | <u> </u> | <u> </u> | Mild Oxidising, Reducing
Vacuum or Inert. Good Where
Moisture is Present, Low
Temperature and Cryogenic
Applications | | E | (G): | <u> </u> | (g): | E : | <u> </u> | <u> </u> | Oxidising or Inert. Limited Use
in Vacuum or Reducing.
Highest EMF Change per
Degree | | N | <u> </u> | <u> </u> | (F): | Use / | No Standar
American Colo | | Alternative To Type K
More Stable at High
Temps | | R | <u> </u> | <u> </u> | (G): | <u> </u> | <u> </u> | E | Oxidising or Inert. Do Not
Insert in Metal Tubes.
Beware of Contamination.
High Temperature | | s | <u> </u> | Oxidising or Inert. Do Not
Insert in Metal Tubes.
Beware of Contamination.
High Temperature |